Science & Enterprise subscription

Follow us on Twitter

  • Statista this week released a chart showing consumer spending on wearable devices like smart watches is expected to… https://t.co/UFH8rNHnTI
    about 21 hours ago
  • New post on Science and Enterprise: Infographic – Big Wearables Spending Growth Expected https://t.co/LBbGRc2HEu #Science #Business
    about 21 hours ago
  • Three medical research studies using Apple iPhones and watches as data collection devices are now available for enr… https://t.co/kxUTVfZG7h
    about 2 days ago
  • New post on Science and Enterprise: Update – Enrollment Opens in Apple Medical Studies https://t.co/DfmESYz2Oo #Science #Business
    about 2 days ago
  • Many thanks @stonybrooku https://t.co/QCVs2hkb8T
    about 2 days ago

Please share Science & Enterprise

Light-Enabled Nanoparticles Detect Early Infection Signs

Tuan Vo-Dinh (Duke University)

Tuan Vo-Dinh (Duke University)

Biomedical and genomic researchers at Duke University in North Carolina developed a technique with light and silver nanoparticles to detect infections earlier than when patients may even report symptoms. The team led by biomedical engineering professor Tuan Vo-Dinh and genomic medicine professor Geoffrey Ginsburg published its findings online in a recent issue of the journal Analytica Chimica Acta (paid subscription required).

The process devised by the Duke team adapts a method of visual energy measurement called surface-enhanced Raman scattering or SERS that detects the light scattered back from the interaction of a light beam with a physical sample. The scattered response, however, is usually weak, requiring an additional enhancement process, which makes it possible to detect scatters from samples as small as a single molecule.

In a proof-of-concept study Vo-Dinh, Ginsburg, and colleagues devised a nanoscale probe they call a molecular sentinel that uses silver nanoparticles with genetic material used in molecular assays. The silver nanoparticles bind to specific molecular biomarkers, in this case, a ribonucleic acid or RNA target for the RSAD2 gene, a biomarker for respiratory infections. Reflections from the target return a unique SERS pattern, providing an optical fingerprint for the biomarker.

Vo-Dinh says the binding of the silver with the biomarker vastly enhances the SERS technique, often by more than a million times. He adds that the tests reported in the paper were the first time these nanoprobes detected specific genetic materials in human samples.

The tests can be designed, say the researchers, to find the infection biomarkers as soon as they enter the blood stream, which may be sooner than the patient even reports symptoms of the infection. While the Duke study tested samples in the lab, the researchers used a portable Raman spectrometer for the tests, which indicates the technology can likely be engineered into point-of-care diagnostics for detecting early signs of infection.

Vo-Dinh, Ginsburg, and colleagues are developing the technique further so it can be placed on a chip device. The researchers say the diagnostic devices could also be designed to test for multiple biomarkers.

Read more:

*     *     *

Please share Science & Enterprise ...
error

Comments are closed.