Science & Enterprise subscription

Follow us on Twitter

  • Covid-19 is truly a global pandemic, and today we offer a new map showing where the disease has spread.… https://t.co/Aku5UqO10p
    about 19 hours ago
  • New post on Science and Enterprise: Infographic – Covid-19 Global Spread Near Complete https://t.co/2sUPynmzxl #Science #Business
    about 19 hours ago
  • University engineering and medical groups designed simple, open-source face shields for health care workers on the… https://t.co/8fzWtcyNjK
    about 2 days ago
  • New post on Science and Enterprise: Univ. Labs Design, Produce Medical Face Shields https://t.co/qMza9qTIo1 #Science #Business
    about 2 days ago
  • An analysis of health care spending by large employers shows both companies and their employees are saving money fr… https://t.co/Pa0tWWmJyG
    about 2 days ago

Please share Science & Enterprise

Efficient Sequencing Method Devised to ID Cells, Biomarkers

Brain visualization image

(Univ of California, San Francisco)

6 August 2014. Researchers at University of California in San Francisco and Fluidigm Corp. in South San Francisco developed a more efficient process for analyzing genetic material, still revealing cell types and biomarkers that previously required more in-depth analysis. The team led by Arnold Kriegstein, director of UCSF’s regeneration medicine and stem cell center, and postdoctoral researcher Alex Pollen, published its findings this week in the journal Nature Biotechnology (paid subscription required).

The UCSF/Fluidigm team employed a device made by Fluidigm, a developer of life science analytical tools, to prepare single-cell samples for sequencing messenger RNA or mRNA — the molecules in the genome transcribing DNA into proteins that give instructions to cells for performing basic life functions. Sequencing reveals the structure of the mRNA molecules that make it possible to identify the properties of cells performing these functions.

Current sequencing methods require deep analysis of samples, up to 5 million reads of individual cells, which makes the process costly, time-consuming, and needing larger specimen samples to analyze. The researchers, using Fluidigm’s single-cell prep system for mRNA analysis, were able to reduce the degree of analysis by 2 orders of magnitude, from 5 million to 50,000 reads per cell.

The team used microfluidics — lab-on-a-chip devices — to capture single cells, then analyzed mRNA transcriptions of 301 cells from 11 separate populations in the brain with the shallower sequencing methods.  The sequencing process, which required larger numbers of cells to study, revealed more diverse types including early developmental cells, such as radial glial cells that are progenitors for neurons and glia in the brain.

“In addition to exploring the consequences of low-depth analysis,” says Pollen in a Fluidigm statement, “the paper includes a pilot study in the brain that reveals some new biology about nervous system development.”  The researchers found in the analysis two types of early growth proteins, EGR1 and FOS, that serve as targets for a basic signaling pathway in human cell development, which had not been previously identified in the radial glia of mice.

Read more:

*     *     *

Please share Science & Enterprise ...

Comments are closed.