3 September 2015. Engineers and medical researchers at Columbia University developed a technique that delivers small amounts of medications in liquid form to specific areas of lungs. The team led by biomedical engineering professor Gordana Vunjak-Novakovic published its proof-of-concept findings earlier this week in Proceedings of the National Academy of Sciences (paid subscription required).
The Columbia team is seeking a method to more carefully target a small volume of drugs to treat lung diseases such as cystic fibrosis, pneumonia, chronic obstructive pulmonary disease (COPD), and lung cancer. Current techniques deliver drugs for the lungs systemically with pills or inhaled aerosols that require a large dosages of medications. The high volume is needed for the drugs to reach their targets, but the quantities can also cause adverse side effects.
Vunjak-Novakovic’s lab in New York studies lung regeneration with stem cells and bioengineering methods, which led to its work on drug delivery to this highly complex organ. Postdoctoral researcher Jinho Kim, the paper’s first author, tracked the flow of liquid in a lab model of lungs with glass tubing representing the channels and stages the compound passes from the airway down to the individual air sacs.
Kim and colleagues then developed a mathematical model of drug delivery with liquids designed to have lower surface tension for easier absorption by the air sacs, a technique used sometimes with premature infants having weak weak lungs. The team used the math model to simulate delivery of minute volumes of drugs, less than 1 milliliter, to various parts of the lung and under varying conditions of ventilation.
The researchers tested the process in lungs of lab rats, delivering less than 1 milliliter of drug and enzyme solutions, with fluorescence imaging to record the results. The findings show the technique can deliver these small quantities to specific areas of lungs, depositing a thin film of liquids on the targeted locations.
“We envision that our micro-volume liquid instillation approach will enable predictable drug concentrations at the target site,” says Vunjak-Novakovic in a university statement, “reducing the amount of drug required for effective disease treatment with significantly reduced side effects.”
Read more:
- Antibody Improves Lung Cancer Survival Time in Trial
- Lung Cancer Antibody Given FDA Breakthrough Tag
- Boehringer Ingelheim Licenses RNA Lung Cancer Immunotherapy
- Trial Crowdsources Lung Cancer Biomarker Screening
- Biotech Alliance to Humanize Pig Lungs for Transplant
* * *
You must be logged in to post a comment.