Donate to Science & Enterprise

S&E on Mastodon

S&E on LinkedIn

S&E on Flipboard

Please share Science & Enterprise

Stem Cells Aid Motor Functions in Spinal Cord Patients

Frozen stem cells

Frozen cells removed from storage in liquid nitrogen tanks (Asterias Biotherapeutics)

14 September 2016. First results from a clinical trial show stem cell treatments help restore some arm and hand functioning in patients with complete cervical spinal cord injury. Edward Wirth, chief medical officer of Asterias Biotherapeutics, presented the findings today at a meeting of the International Spinal Cord Society in Vienna, Austria. The early- and intermediate-stage trial is testing the safety of different dose levels of treatments derived from human embryonic stem cells, but is also tracking any restoration of motor functions in the patients’ arms and hands.

Spinal cord injuries are usually caused by a sudden, traumatic blow to the spine that bruises or tears into spinal cord tissue, resulting in fractures or compression to vertebrae, or in some cases severing of the spinal cord. Depending on severity, people with spinal cord injuries often suffer loss of feeling or motor function in the limbs, and in some cases complete paralysis. According to the National Spinal Cord Injury Statistical Center, spinal cord injuries occur in 40 out of 1 million people in the U.S., adding some 12,500 new cases each year.

The clinical trial is testing the treatments, code-named AST-OPC1 among individuals with spinal cord injuries that caused complete loss of sensation and motor functions from the neck down. Asterias, in Fremont, California, acquired stem cell therapies in development by Geron Corporation, including treatments for spinal cord injury. The treatments are derived from human embryonic stem cells, cultured into oligodendrocyte progenitor cells, or OPCs, then transplanted to regenerate into functioning spinal cord nerve cells.

AST-OPC1 is designed to help repair the myelin that provides insulation around nerve cells in the brain and spinal cord. With myelin repaired, signaling of nerve cells is expected to be at least partially restored, allowing for some or more restoration of motor and sensation signals from the brain as well. Studies with lab animals show transplanted human OPCs are capable of restoring some limb functions.

Asterias reported on motor function scores from the first 4 participants receiving single injections of 10 million OPCs — the higher dose level — 90 days after the injections. A 5th participant also received a 10-million cell dose, but less than 90 days ago. The results report as well on 3 patients receiving the lower dose injections of 2 million OPCs after 1 year.

The individuals were rated on a standard scale and algorithm measuring motor and sensory impairment as a result of spinal cord injury, calculating levels of ability in motor functions on 1 or both sides of the body. The company cites research indicating patients with complete spinal cord injuries showing 2 levels of motor improvement on at least 1 side of their body can regain abilities to perform daily activities, such as eating, dressing, and bathing.

The results show participants receiving either high or low doses of OPCs improved their motor functions. After 90 days, all 4 patients receiving 10 million OPCs improved at least 1 level of motor functioning on 1 or both sides of their bodies, while 2 of the 4 participants improved 2 levels of motor function on at least 1 side, and 1 individual achieved 2 levels of functional improvement on both sides.

Of the 3 participants receiving doses of 2 million cells,  2 individuals after 1 year improved 1 level of motor function on both sides of the body, and 1 patient improved 1 level on 1 side. The company says no serious adverse effects were reported in either the higher or lower dose groups, to the stem cells, injection procedures, or immunosuppressive drugs given with the injections.

Asterias plans to report in January 2017 on results of the 10 million dose patient group after 6 months. The trial includes testing of even higher doses of AST-OPC1, 2 injections of 10 million cells, or 20 million OPCs total. The company expects to report on results of those tests later in 2017.

Read more:

*     *     *

3 comments to Stem Cells Aid Motor Functions in Spinal Cord Patients