Science & Enterprise subscription

Follow us on Twitter

  • A chain of primary care clinics in grocery stores is adding diagnostics using artificial intelligence to detect an…
    about 15 hours ago
  • New post on Science and Enterprise: Retail Clinics Offer A.I.-Enabled Eye Diagnostics #Science #Business
    about 15 hours ago
  • Early results from a clinical trial testing gene editing treatments for inherited blood disorders show the treatmen…
    about 20 hours ago
  • New post on Science and Enterprise: First Blood Disorder Crispr Treatments Reported #Science #Business
    about 20 hours ago
  • A group of academic, foundation, and business organizations are collaborating on the use of artificial intelligence…
    about 2 days ago

Please share Science & Enterprise

Silk, Cellulose Provide Useful Scaffold to Repair Cartilage

Spools of silk thread (storebukkebruse/Flickr)Researchers at the universities of Bristol and Cambridge in the U.K. found natural silk and cellulose fibers effective as scaffolding to rebuild damaged cartilage with stem cells. The team led by Wa’el Kafienah in Bristol’s School of Cellular and Molecular Medicine published its findings in a recent issue of the journal Biomacromolecules (paid subscription required).

The research team examined the feasibility of using these natural fibers with mesenchymal stem cells to grow new skeletal tissue such as cartilage. In this case, the fibers would serve as a matrix or scaffold on which adult stem cells could bind and grow.

Mesenchymal stem cells are typically found in bone marrow, but can also be derived from umbilical cord blood.  They can grow and differentiate into skeletal or connective tissue, such as cartilage. For this study, the researchers took mesenchymal stem cells from four volunteers.

Kafienah, with colleagues from Bristol’s Advanced Composites Centre, induced stem cells to grow on blends of silk and cellulose into cells known as chondrocytes, which are precursors to healthy cartilage cells. The team used ionic liquids — salts in liquid form with a low melting point — to dissolve the biopolymers in the fibers, and interact with the stem cells to generate extracellular material similar to cartilage.

The researchers tested the process with pure cellulose fibers, as well as 50/50 and 75 cellulose/25 silk blends. They found the 75/25 blend most effective in differentating the stem cells into chondrocytes.

The medical and materials researchers are now working on developing three-dimensional tissue samples for implantation with patients, as well as getting a better understanding of the interactions between the biopolymers in these fibers and stem cells that create the engineered tissue.

Read more:

Photo: storebukkebruse/Flickr

*     *     *

Please share Science & Enterprise ...

Comments are closed.