Science & Enterprise subscription

Follow us on Twitter

  • Symptom checker K Health raises $48M https://t.co/hIEK1AL5vd
    about 24 hours ago
  • This makes me feel better ... Pence Will Control All Coronavirus Messaging From Health Officials https://t.co/M2Fv13okyE
    about 2 days ago
  • https://t.co/8n5kpVEGCH
    about 2 days ago
  • Takeda acquires PvP Biologics for $330M following Phase I celiac disease study results https://t.co/Amtm5sS9aq
    about 2 days ago
  • https://t.co/mZ8yGjsAgx Raises $462M With Toyota In The Driver’s Seat https://t.co/8gawjBxZzw via @crunchbasenews
    about 3 days ago

Please share Science & Enterprise

Flying, Driving Drone Robot Unveiled

FSTAR hybrid robot

FSTAR flying-driving robot (American Associates, Ben Gurion University)

21 May 2019. A robot device is being developed that can fly through the air and drive along the ground with a single motor, and adjust its width for tight spaces. The device called FSTAR, short for flying sprawl-tuned autonomous robot, is scheduled for demonstration today at the International Conference on Robotics and Automation in Montreal.

FSTAR is a product of the Bio-Inspired and Medical Robotics Lab at Ben Gurion University of the Negev, in Beersheva, Israel. The lab is led by mechanical engineering professor David Zarrouk, and studies robotic devices small and large that travel through difficult and unusual environments for search and rescue, space, maintenance, agricultural, and medical purposes. The group specializes in simple devices, easy to control and operate, that maximize performance with a minimum of hardware.

The hybrid FSTAR device uses a sprawling motion, with the wheels pitched at an angle and controlled by a single motor. By adjusting the angle of the wheels, from flat to 55 degrees, the wheels can drive the device along the ground, and lower itself to crawl under obstacles. FSTAR can also pull the wheels in toward the center of the device body to fit through tight spaces, or transfer the motor’s power to propellers inside the wheels that fly the device like a quadcopter.

FSTAR’s developers say the device can travel along the group at 2.6 meters (8 feet) per second, which  keeps energy consumption low. Current FSTARs can carry loads weighing up to 400 grams (0.9 pounds). The prototype demonstrated in Montreal was produced on a 3-D printer.

The group believes the FSTAR device can fill a need for delivery drones that can both fly to a location, then drive along the ground to precise delivery points inside buildings. FSTAR can also be used in agriculture, maintenance, cleaning, filming, and entertainment, as well as law enforcement and anti-terrorist applications.

“We plan to develop larger and smaller versions to expand this family of sprawling robots for different applications,” says Zarrouk in a university statement, “as well as algorithms that will help exploit speed and cost of transport for these flying-driving robots.”

Ben Gurion University’s technology transfer company, BGN Technologies, has an initiative called ABC Robotics, for commercializing agriculture, biological, and cognitive robots based on the university’s research.  That program includes devices developed in Zarrouk’s lab. The following video shows the FSTAR in operation both inside buildings and outside.

More from Science & Enterprise:

*     *     *

Please share Science & Enterprise ...

Comments are closed.