Science & Enterprise subscription

Follow us on Twitter

  • Any other year, the Lincoln Memorial would be jammed at 11:30 am on a springtime Sunday. Not this year, of course.… https://t.co/4SL7ZDLWLS
    about 7 hours ago
  • Cherry blossoms at time of #Covid19 https://t.co/G5agDNwsGM Sent to @pressclubdc #CoronavirusNPC photo collection
    about 20 hours ago
  • Visitors to Jefferson Memorial, 20 Mar 2020 https://t.co/k7cm3EhAFn Sent to @pressclubdc #CoronavirusNPC photo collection
    about 20 hours ago
  • Bottled water aisle, 15 Mar 2020. https://t.co/dFMl421mL6 Sent to @pressclubdc #CoronavirusNPC photo collection
    about 20 hours ago
  • The number of new Covid-19 tests per day in the U.S. now exceeds 100,000, but the backlog of tests awaiting results… https://t.co/39dGn7kUbE
    about 2 days ago

Please share Science & Enterprise

Bioprinting Ear Tissue Tagged Rare Disease Treatment

3-D bioprinter

3-D bioprinter (Bonassar Research Group, Cornell University)

6 Dec. 2019. A company developing 3-D printed outer ear tissue received a rare pediatric disease designation on its treatment designed for children. According to the company 3DBio Therapeutics Inc. in New York, Food and Drug Administration granted the designation for AuriNovo, a process developed for treating microtia, a condition usually evident at birth.

Microtia is the name for irregularities in construction of the outer ear, from smaller than normal size, to deformed tissue, or completely missing outer ear tissue. The disorder occurs at a rate of 1 in 6,000 to 12,000 births, is rarely caught on fetal sonograms, occurs more often in boys than girls, and affects the right ear more than the left. While hearing loss may accompany the deformed ear tissue structure, the visible condition is often highly upsetting to children and parents. Up to now, treating microtia requires difficult surgical reconstruction of the outer ear.

3DBio Therapeutics offers 3-D printed tissue custom-designed for the patient’s disorder. For microtia, the company developed its AuriNovo process that takes cells from a patient’s own ear cartilage tissue, and uses those cells to seed and grow more outer ear tissue cells. Those cells are formulated into bio-inks for the company’s GMPrint 3-D printer that 3DBio says meets standards of FDA’s current Good Manufacturing Practices. With GMPrint, the company produces replacement tissue for surgical implantation, guided by algorithms and designs matching the patient’s individual size and shape dimensions.

The company’s technology is based on research by its scientific founders biomedical engineering professor Larry Bonassar at Cornell University and robotics professor Hod Lipson at Columbia University. Dan Cohen, a Ph.D. engineer at Cornell studying 3-D printing, joined Bonassar and Lipson in founding 3DBio Therapeutics in 2014, and continues as the company’s CEO. In February 2013, Science & Enterprise reported on advances in 3-D printing of ear tissue for treating microtia developed by Bonassar and colleagues at Cornell, published in the journal PLoS One.

FDA’s rare pediatric disease designation offers an opportunity for priority review of a drug or biologic designed for rare conditions affecting individuals under the age of 18. Developers of a treatment designated for a rare disease receive a voucher making the drug or biologic eligible for priority review by FDA, when eligible. All of 3DBio’s treatment candidates — for microtia, herniated intervertebral disc, degenerative disc disease, and complex nasal defect — are in preclinical stages.

In November, 3DBio received from FDA orphan disease designation for AuriNovo, making the treatment also eligible for financial incentives, such as tax credits and waived user fees.

More from Science & Enterprise:

*     *     *

Please share Science & Enterprise ...

Comments are closed.