Science & Enterprise subscription

Follow us on Twitter

  • Exclusive to Science & Enterprise ... An organization for redressing health disparities faced by women awarded a ne… https://t.co/nzlQAjGIZf
    about 6 hours ago
  • Exclusive to Science and Enterprise: Women’s Heart Health Diagnostics in the Works https://t.co/0rrQ5NLaDH #Science… https://t.co/fYwYiGHJhf
    about 6 hours ago
  • A new company, spun off from university biomedical engineering labs, is creating cancer diagnostics by analyzing mi… https://t.co/XvwdRSaAqJ
    about 23 hours ago
  • New post on Science and Enterprise: Start-Up Developing Microbial Cancer Detection Tests https://t.co/jJyKDfFQPz #Science #Business
    about 23 hours ago
  • An NIH award to a biotechnology company funds discovery of drugs that protect brain cells from degenerative disorde… https://t.co/kw5ISn5tuD
    about 1 day ago

Please share Science & Enterprise

Carbon Nanotube Material Used on NASA Jupiter Mission

Atlas V rocket launches NASA's Juno planetary probe (Scott Andrews/NASA)

Atlas V rocket launches NASA's Juno planetary probe (Scott Andrews/NASA)

Nanocomp Technologies Inc. in Concord, New Hampshire, a developer of materials and component products from carbon nanotubes, says that its nanotube-based sheet material has been incorporated into NASA’s Juno spacecraft launched on 5 August. The material, called Emshield, is expected to provide protection against electrostatic discharge (ESD) as the spacecraft makes its way to Jupiter.

Juno’s development team used Nanocomp’s material as a surface layer on several components of the flight system’s attitude control motor struts and the main engine housing. Nanocomp worked with Lockheed Martin, the prime contractor on the project, to integrate Emshield into the spacecraft during its development and construction.

Peter Antoinette, president of Nanocomp Technologies, says “Lockheed [Martin] was interested in implementing an alternative ESD solution to traditional aluminum foil that is typically bonded to the surface of composites.” Antoinette added that with the Emshield sheet layers, Lockheed Martin was able to put electrostatic discharge protection directly into the composite, making the composite a more integral part of the spacecraft.

NASA says the objective of the Juno mission “is to significantly improve our understanding of the formation, evolution and structure of Jupiter.” By 2016, the solar-powered Juno spacecraft will reach Jupiter and enter into a highly elliptical polar orbit that skims only 5000 kilometers above the planet’s atmosphere. The Juno spacecraft will be traveling through strong radiation belts en route to Jupiter, thus the need for stronger than usual ESD protection.

Read more: Student Creates Self-Strengthening Nanocomposite Material

*     *     *

Comments are closed.