Science & Enterprise subscription

Follow us on Twitter

  • An international group of universities and companies is designing a next-generation device to restore more natural… https://t.co/8cuc7GH22E
    about 15 hours ago
  • New post on Science and Enterprise: NIH Funds Natural Hearing Restoration Technology https://t.co/1Kd4DMGyAs #Science #Business
    about 15 hours ago
  • The commissioner of the Food and Drug Administration warned that the sharp rise in teen electronic cigarette use i… https://t.co/ki4NSp7zUI
    about 18 hours ago
  • New post on Science and Enterprise: FDA Chief Calls Teen Vaping an “Epidemic” https://t.co/jysDZCfTF8 #Science #Business
    about 18 hours ago
  • New contributed post on Science and Enterprise: https://t.co/tIrCNa7UiR Technology is Shaping the Future of Business Travel
    about 2 days ago

Please share Science & Enterprise

RSS
Follow by Email
Facebook
Facebook
Google+
Twitter
Visit Us
LinkedIn
INSTAGRAM

Cancer Labs Crowdsource Drug Discovery

Acute myeloid leukemia cells

Acute myeloid leukemia cells (Cancer Genome Atlas, NIH)

3 September 2015. Ontario Institute for Cancer Research and Structural Genomics Consortium are making an early-stage drug prototype freely available to the biomedical research community to further define its therapeutic capabilities. Financial and intellectual property aspects of the offer were not immediately disclosed.

The two research labs — both in Toronto, Ontario, Canada — jointly developed a small molecule compound that in lab tests already shows promise in blocking growth of breast cancer cells and some types of acute myeloid leukemia. The molecule, code-named OICR-9429, targets and stops activity of WD repeat-containing protein 5 or WDR5 protein associated with a number of regulatory processes in the body affecting cell growth.

Developers of OICR-9429 already collaborated with labs in the U.S. and Austria to find targets for the therapeutic molecule. In a study published yesterday in the journal Nature (paid subscription required), a lab at University of Pennsylvania in Philadelphia discovered OICR-9429 can counteract mutations of the TP53 gene associated with a wide range of cancer types, and in the study sharply reducing proliferation of breast cancer cells.

In a study published on 20 August in Nature Chemical Biology (paid subscription required), a team led by researchers at CeMM Research Center for Molecular Medicine in Vienna, Austria applied OICR-9429 to mutations of the CEBPA gene associated with about 9 percent of cases of acute myeloid leukemia that expresses a protein that interacts with WDR5. In lab tests, the researchers found OICR-9429 inhibited growth of acute myeloid leukemia cells expressing the mutation-associated protein.

Developers of OICR-9429 want to see more of these studies and quickly, which is the reason for making OICR-9429 available to fellow researchers. “In the time that it would normally take to negotiate a legal agreement to provide OICR-9429 to other research teams,” notes Cheryl Arrowsmith, chief scientist at Structural Genomics Consortium in a joint statement, “we have received results back from our collaborators showing that it can kill two different types of cancer cells.”

By making OICR-9429 readily available and insisting on researchers sharing the results, Ontario Institute for Cancer Research and Structural Genomics Consortium say they hope to speed the identification of targets for the compound and build on the common experiences of teams testing the compound. The two organizations are collaborating on other therapeutic molecules with which they expect to apply these same development methods.

Read more:

*     *     *

Please share Science & Enterprise ...

2 comments to Cancer Labs Crowdsource Drug Discovery